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Abstract
Within the framework of the mode-coupling theory of super-cooled liquids,
we investigate new phenomena in colloidal systems on approach to their glass
transitions. When the inter-particle potential contains an attractive part, besides
the usual repulsive hard core, two intersecting liquid–glass transition lines
appear, one of which extends to low densities, while the other one, at high
densities, shows a re-entrant behaviour. In the glassy region a new type
of transition appears between two different types of glasses. The complex
phenomenology can be described in terms of higher order glass transition
singularities. The various glass phases are characterized by means of their
viscoelastic properties. The glass driven by attractions has been associated
with particle gels, and the other glass is the well known repulsive colloidal
glass. These correspondences, in association with the new predictions of glassy
behaviour, mean that such phenomena may be expected in colloidal systems
with, for example, strong depletion or other short-ranged attractive potentials.

1. Introduction

The experimental study of the glass transition in colloidal systems [1] has been a very important
test case by which to assess the validity of theories concerning the formation of an amorphous
solid from super-cooled liquids. In particular the mode-coupling theory (MCT) has been
useful when applied to colloids, modelled as spherical particles interacting through a hard
sphere purely repulsive potential [2]. In this case the MCT predicts the existence of a critical
volume fraction φ where the system undergoes an ergodic–non-ergodic transition, which was
observed experimentally using quasi-elastic dynamic light scattering [3]. From the physical
point of view the MCT describes in a fairly accurate way the so-called cage effect, i.e. the
fact that at high densities molecular motions of particles are constrained by the presence of
the surrounding ones which form a cage around each particle. Prior to reaching the MCT
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transition, we may think of the particle vibrating within their cages at short timescales, and
escaping from their cages at somewhat longer timescales. The two timescales show up in a well
defined way, when the liquid system gets closer to the critical threshold, as distinct relaxation
regimes separated by a plateau region which becomes more and more extended as criticality
is approached. Close to and above the plateau, there is a power law and the plateau ends with
another power law prior to entering into the so-called full α regime. The power-law region is
called β correlator in the framework of MCT. The α decay is quite well phenomenologically
described by a stretched exponential.

We have briefly sketched the main features of the MCT for colloids considered as hard
spheres and proceed to consider the novel consequences of adding an attractive contribution
to the inter-particle potential. In this paper we mainly consider the effects of using a hard
core followed by a square well potential in order to mimic the interactions between colloidal
particles. In real systems this can be obtained, for example, by covering the surface of the
particles with a polymer coating or with depletion interaction [4]. A description of such systems
using the MCT approach has revealed the existence of a set of new and interesting phenomena,
that we briefly summarize in what follows [5, 6]. In the temperature T and volume fraction φ

plane MCT predicts two lines of transition from liquid to glass. One of the lines extends to
high temperatures, it can be traced essentially to the repulsive part of the potential and tends
asymptotically for high temperatures to the value φ corresponding to the critical value for hard
spheres. We will call it the repulsive glass transition line (RGL). On lowering the temperature
the transition line moves toward higher values of φ and gives rise to a re-entrant behaviour,
i.e. one can pass from a liquid to a glassy state either by lowering or by raising T . In other
words the liquid phase tends to exist in a region which extends more deeply into the glassy
phase compared with the hard spheres case. The origin of this unusual effect is that if the
interaction is short ranged enough, there can, in this temperature and density regime, be partial
cancellation of the repulsive and attractive interactions leading to a phenomenon for glasses,
not unlike that of a theta point for polymers.

The other glass transition line, originating in a relatively well defined energy scale of the
well depth, is almost parallel to the φ axis and extends on one side of the binodal to the other,
until it eventually crosses the repulsive transition line. We call it the attractive glass transition
line (AGL). For sufficiently narrow well widths and on the high φ end the AGL enters the glass
region and terminates in an endpoint. Thus the two sides of the line separate two different types
of glassy system that we will characterize through their mechanical properties. The endpoint
of the AGL is a higher order glass transition point (called A3), which will be shown to have
special dynamical properties, namely the relaxation slows down dramatically on approaching
it. Upon increasing the width of the potential well, the length of the AGL shrinks and its
extension into the glass region reduces to zero, and as a consequence the endpoint turns into
a higher transition point (called A4). We will characterize this rather complex behaviour of
the system, where repulsion and attraction compete, using two typical dynamical quantities,
the shear viscosity, which characterizes the liquid phase, and the elastic shear modulus for the
amorphous glass.

Aspects of the MCT have been tested in many different cases, both experimentally
and with computer molecular dynamics [7]. The most extensive and accurate experimental
check has been performed in the liquid–glass transition of colloidal systems, treated as hard
sphere systems, and studied with dynamic light scattering [3]. The agreement with MCT
is quantitatively satisfactory [8]. In a similar fashion computer simulations have been used
to study the glass transition in simple model systems, as diverse as Lennard-Jones binary
systems [9], the SPC/E model for water [10], orthoterphenil [11] and silica [12]. In all these
cases evidence shows that these systems undergo a kinetic glass transition, and the molecular
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dynamics is well accounted for by the idealized MCT of super-cooled liquids. On the other
hand there is extensive evidence, mainly due to experimental results in colloidal systems, that
cannot be interpreted in terms only of hard-core potentials.

Dense systems of colloidal particles characterized by a hard core and strong short-ranged
attractions have been realized experimentally by adding polymers to either a suspension of
colloidal hard spheres [4], in solutions of sterically stabilized particles when decreasing the
solvent quality [13], and in copolymer micellar systems when changing the temperature [14].
Such systems were also studied by Monte Carlo simulations [15]. The facts that cannot be
simply explained using hard-core potentials are the following.

(i) An amorphous material can be formed by increasing the attraction strength even though the
volume fraction is kept well below the value of the hard sphere glass transition [13, 16–19].

(ii) In mixtures of colloids and polymers, melting of the glass states is obtained by increasing
the strength of a short-range attraction by the addition of small polymers [4].

(iii) Using solvents of decreasing quality [13] in polymer coated colloidal particles the long
time limit of the density time correlation function at small wavevectors are much larger
than in hard-sphere systems.

(iv) Viscoelastic measurements for intermediate frequencies found strongly concentration
dependent elastic moduli [16–19].

(v) A system in which an anomalous dynamical behaviour has been reported is a polymer
solution (called L64) where structural arrest accompanied by a logarithmic-like decay of
the density correlator is observed [20].

The paper is organized as follows. In section 2 we report the details of the calculation
of the structure factor for a square-well system (SWS), the only input needed for the mode-
coupling dynamics, which is described in section 3. The resulting phase diagram is described
in section 4, the time dependent density correlation functions in section 5 and finally the various
phases are characterized by their mechanical properties in section 6. In section 7 we report
our conclusions.

2. Calculation of the structure factor

In the framework of the MCT the only quantity that is needed in order to calculate the dynamical
properties of a super-cooled liquid approaching the glass transition is the structure factor. It
is well known that, given an inter-particle potential satisfying the Ornstein–Zernike equation
for the space-dependent pair correlation function g(r), one needs a closure approximation in
order to solve the equation. Many approximations of this type have been proposed and solved
in the case of simple model potential [21]. In the case of the square-well potential the Wiener–
Hopf method as formulated by Baxter [22] can be used. The interaction potential V (r) for
particles a distance r apart, is obtained with a hard-core repulsion for r < d, and the negative
attractive value −u0 within the range d < r < D. The structure factor is specified by three
control parameters, i.e. the packing fraction φ related to the hard cores, the temperature T , and
the relative width ε = 1 − d/D of the attraction shell. In the Baxter approach the structure
factor Sq is expressed in terms of the Fourier transform Q̃(q) of the factor function Q(r), a
continuous real function defined for r � 0,

S−1
q = Q̃(q)Q̃∗(q) (1)

Q̃(q) = 1 − 2πρ
∫ ∞

0
dr exp(iqr)Q(r). (2)
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The function Q(r) is related to the direct correlation function c(r) [21] and both functions
vanish beyond the distance D. For 0 � r � D, the following equation for Q(r) holds

rc(r) = −Q′(r) + 2πρ
∫ R

r

ds Q′(s)Q(s − r). (3)

In addition for r > 0

rh(r) = −Q′(r) + 2πρ
∫ R

0
ds (r − s)h(|r − s|)Q(s). (4)

For the SWS, g(r) = 0 is fulfilled for 0 < r < d , and therefore, using h(r) = g(r) − 1,
equation (4) splits into three sub-equations. The result for the middle part, � � r � d, is very
simple since the formula known from the theory for the hard-sphere system is reproduced

Q′(r) = ar + b (5)

where the coefficients a and b are introduced by

a = 1 − 2πρ
∫ d+�

0
ds Q(s) b = 2πρ

∫ d+�

0
ds sQ(s). (6)

Defining G(r) = rg(r) one finds, for small distances, 0 � r � �, where � = D − d,

Q′(r) = ar + b − 2πρ
∫ d+�

r+d
ds G(s − r)Q(s) (7)

and for the attraction shell, d � r � D, one obtains

Q′(r) = ar + b − G(r) + 2πρ
∫ r−d

0
ds G(r − s)Q(s). (8)

A closure approximation for c(r)must be introduced into equation (3) in order to complete
the system of equations (3) and (8). Using the Percus–Yevick (PY) approximation [21],
according to which

c(r) = g(r)

[
1 − exp

(
V (r)

kBT

)]
(9)

inside the hard core in equation (3) and equation (8) leads to the approximation valid for
d � r � d + �

e−u0/kBT G(r) = ar + b − 2πρ
∫ d+�

r

ds Q′(s)Q(s − r) + 2πρ
∫ r−d

0
ds G(r − s)Q(s). (10)

Equations (8) and (10) for Q(r) and G(r) are solved numerically choosing on each of the three
intervals of the variable a grid of equally spaced points rn, where n = 1, 2, . . . , 1000. The
integral in equation (2) is then performed to obtain Q̃(q) and hence Sq . The typical values
for the factor function Q(r) are shown in figure 1, while figure 2 shows the corresponding
structure factors Sq for various temperatures, given in term of the well depth u0 as kBT /u0,
where kB is the Boltzmann constant as in equation (10).

In a first attempt to solve the problem associated with the attractive part of the inter-particle
potential the Baxter potential has been used [22], i.e. the limit of a square well in which the
range of the potential vanishes while its depth increases in such a way that their product remains
constant [5]. The mean spherical approximation has also been used in conjunction with an
attractive Yukawa potential in an attempt to explain colloidal gelation [23]. We may note that
more recently other methods of generating the structure factors have been explored [6, 24].
The main results reported here are found not to depend on these details, and we therefore here
only comment on the square well potential.
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Figure 1. The Baxter factor function Q(r) at ε = 0.03, φ = 0.504 449 and different temperatures.
The hard-core diameter is chosen as the unit of length.

2 4 6 8 10
q

0

1

2

3

S
q

T=0.5000
T=0.7500
T=0.8000
T=0.8001
T=0.8500
T=1.1000

3.2 3.4 3.6 3.8

2.2

2.4

2.6

Figure 2. The structure factors function in the PY approximation at various temperatures, ε = 0.03
and φ = 0.504 449. The inset shows the maxima of the structure factors.

3. The mode-coupling equations

The MCT of the ideal liquid–glass transition is capable of describing the ergodic to non-ergodic
transition in the normalized density correlation function

φq(t) = 〈ρ∗
	q (t)ρ	q〉

〈|ρ	q |2〉 . (11)

In the long time limit φq(t) shows a discontinuous variation from a vanishing value in a super-
cooled liquid to a finite value different from zero fq in a glassy state, on varying the external
control parameters. In the latter state the system experiences a structural arrest. In real systems
the transition point is never reached since new dynamical mechanisms set in which bypass the
ergodicity breakdown. The MCT equations are

φ̈q(t) + &2
qφq(t) + νqφ̇q(t) + &2

q

∫ t

0
mq(t − t ′)φ̇q(t

′) dt ′ = 0 (12)
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where the mode-coupling memory functional mq is given by

mq(f ) = 1

2

∫
d3k

(2π)3
V	q,	kfkf|	q−	k|. (13)

The mode-coupling vertices are determined by the density ρ, the structure factor Sq and the
direct correlation function cq = (1 − 1/Sq)/ρ

V	q,	k ≡ SqSkS|	q−	k|
ρ

q4
[	q · 	kck + 	q · (	q − 	k)c|	q−	k|]

2. (14)

The two quantities &q and νq are respectively the characteristic frequency of the phonon-type
motions of the fluid, and a term that describes instantaneous damping arising from the fast
contribute to the memory function. They are defined as

&q = q2kBT

mS(q)
νq = ν1q

2

and νq = 1 in our calculations. In the long time limit t → ∞, the density correlators φq(t)

tend to a value

fq = 〈ρ∗
q (0)ρq(∞)〉
〈|ρq(0)|2〉 (15)

the non-ergodicity factor, or Debye–Waller factor. The MCT equations (12) in the static limit
give rise to the bifurcation relation

fq

1 − fq

= 1

2

∫
d3	k
(2π)3

V ( 	q, 	k)fkf| 	q−	k|. (16)

It is clear that fq = 0 is a solution of equations (16) and it corresponds to an ergodic state of the
system in which the correlations decay for long time. The correlators tend instead to a finite
value different from zero if the system is kinetically arrested. This loss of ergodicity for φ is
interpreted as the transition to a kinetic glassy state. Therefore for some critical values of the
thermodynamic parameters, density and temperature in our case, bifurcations of the solutions
of the asymptotic equations appear that produce non-zero solutions. The bifurcations can be
multiple, up to the number of control parameters of the system. Thus, when a bifurcation gives
rise to more than two solutions of equations (16), there will exist multiple solutions with finite
non-ergodicity factors. In these cases one speaks of Ak-type bifurcations, with k = 2, 3, 4, . . ..
In this case, MCT predicts that only the state corresponding to the largest value of fq is a stable
solution of the equations [2].

4. Phase diagram

The phase diagram resulting from the solution of the MCT equations in the large time limit
is shown in figure 3. We report the liquid–glass transition lines for some values of the width
parameter ε. At this point it is worth reviewing the points made earlier about the experimental
observations in the introduction. Indeed, the calculated phase diagram exhibits the phenomena
of points (i) and (ii), and in later sections we shall show that all the other points are satisfactorily
described. We point out the salient features of the phase diagram below.

(i) For high enough temperatures the repulsive glass lines, RGL, tend to converge to a
value approaching the critical volume fraction for hard-sphere systems φc ≈ 0.516,
corresponding to the fact that for large T the short-range part of the inter-particle potential
weakly affects the dynamics. In this case the microscopic effect described by the MCT is
the excluded volume cage effect, the impossibility of the molecules to move freely due to
the presence of the neighbouring particles.
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Figure 3. The phase diagram of a square-well system in the PY approximation for a square well
relative width ε = 0.03. The inset shows the complete phase diagram, where the AGL and the
RGL are given for various values of ε. From [6].

(ii) On lowering the temperature a liquid stabilizing effect due to the attractive forces sets
in, so that the liquid–glass lines tend to extend to larger values of the volume fraction.
This behaviour gives also rise to the possibility of the glass melting when lowering the
temperature.

(iii) The re-entrant behaviour characterizes the interplay of the repulsive and the attractive
inter-particle forces; the system can become a glass both when lowering or raising the
temperature.

(iv) For even lower values of the temperature another phase line, the AGL, appears and it is
almost parallel to the φ axis. In this case the particle motions are difficult since, due to
the attractive interactions, the particle tend to form bonds.

(v) The two sections of the phase lines, RGL and AGL, intersect at a finite angle for small
values of the parameter ε. The AGL extends for higher volume fractions beyond the
crossing point and finally ends in a point.

(vi) The points on the glass lines we have discussed so far all correspond to bifurcations of
type A2, while the end point of the AGL relates to a higher order bifurcation A3.

(vii) The extension of the AGL that develops in the glass region leads to the coexistence of two
different types of glasses. In order to represent the differences between the two glasses
we present in figure 4 the shape of the non-ergodicity factor fq crossing the glass–glass
transition. The results are now consistent with the experimental observation (iii) in the
introduction. The width of the fq is related to the localization length of the particles in
the glass. If the width is larger the particles are more localized. It is evident that the
colloidal particles are more localized in the attractive glass than in the repulsive one. It
is also possible to show that the localization of the length in the repulsive glass remains
more or less unchanged when decreasing the temperature, whereas for the attractive one
the particles become more localized. This seems to confirm the idea that the repulsive
glass is dominated by the so-called cage effect: when the system gets to high packing
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Figure 4. The typical non-ergodicity factors fq crossing the glass–glass transition line for ε = 0.03
and φ = 0.544 052.

fraction the particles start to be blocked by their neighbours, at a certain critical packing
fraction φc each particle is trapped in a cage formed by the surrounding particles. Indeed
this is a purely geometrical effect and it should not depend on temperature.

(viii) On increasing the relative square well width parameter ε the glass–glass line tends to
shrink and finally coincides with the point of intersection of the RGL and AGL when
ε ≈ 0.04. This end point is a higher bifurcation point of type A4. We note that there
is no difference in the structure factor across this curve. Only the late stage dynamics,
reflected in the values of the non-ergodicity factors, may be used to differentiate between
these glasses.
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Figure 5. Time dependence of the density correlators for q = 21.75, ε = 0.03, φ = 0.504 449
and different temperatures.
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5. The intermediate scattering function

We have studied the dynamical behaviour of the system in different regions of the phase
diagram, in particular in the proximity of the higher order bifurcation points A3 and A4. We
will mainly comment on the case where the well width parameter is ε = 0.03. The wavevectors
are given in units of the particles diameter. In figure 5 we present different intermediate
scattering functions for q = 21.75, obtained by solving MCT equations, approaching the
glass transition at φ = 0.504 449 and Tc � 0.8000. The relevant cut across the attractive
glass curve is shown in figure 3 using crosses, and a transition point. For temperatures well
above the glass transition, i.e. T = 0.85, φq(t) presents the typical liquid behaviour: after a
first short-time decaying due to microscopic dynamics, the correlation function starts to relax
toward ergodicity and no sign of a critical slowing down is evident. When the system becomes
close enough to the transition temperature (T = 0.800 10 in figure 5) the system starts to
freeze and the typical two step relaxation scenario starts to be evident. We note that we are
here crossing that transition curve which we believe corresponds to the process of gelation at
high density. We see, therefore, that we may expect the characteristic behaviour of a glass
transition in the slow dynamics near gelation at high density. Once the system is below the
transition temperature (the case T = 0.800 00 in figure 5), φq(t) corresponding to the gel does
not relax to zero anymore, the system is non-ergodic. In this situation there is only part of
the β-relaxation toward a non-zero constant value, i.e. the non-ergodicity parameter fq �= 0.
Perhaps it is useful now to discuss some of the MCT predictions for the asymptotic behaviour
of the intermediate scattering function (see for example [2] and references therein). In the time
region where t0 � t � τα the so-called factorization theorem holds

φq(t) = f c(q) + hqG(t) (17)

t0 being a typical macroscopic time, τα the α relaxation timescale and f c
q the critical non-

ergodicity parameter. Equation (17) implies a universal behaviour in which wave vectors and
time factorize. G(t) is a scaling function which describes the whole relaxation pattern. Near
the glass transition the behaviour of the function G(t) may be calculated analytically in the
proximity of the α and β relaxation. It can be shown that the asymptotic behaviour can be
expressed in terms of a rescaled time τ = t/tσ where tσ is a timescale that depends crucially
on the distance to the transition, i.e. on the separation parameter σ [2]. Close to the glass
transition, for T > Tc, G(τ) is given by

G(τ � 1) ∼ 1/τa (18)

G(τ � 1) ∼ −τ b (19)

where the two exponents are related to the exponent parameter λ, which is obtained from a
stability matrix [2], via the relation λ = ,2(1 − a)/,(1 − 2a) = ,2(1 + b)/,(1 + 2b), which
implies 0 < a < 1/2 and 0 < b < 1. The scaling behaviour of the correlation function
changes in the proximity of higher bifurcation points. In particular it is possible to show that
near an A3 point G(t) ∼ 1/ ln(t/t1) whereas near an A4 it goes like G(t) ∼ 1/ ln2(t/t1),
where t1 is a microscopic timescale [26]. This is quite a remarkable behaviour and represents
a rather strong prediction of the theory. There have been reports of such behaviour in some
system [20, 26], and it will be interesting to see if this phenomenon is discovered in a variety
of different colloidal systems.

6. Mechanical properties

Two particularly interesting quantities to investigate in the vicinity of the glass transition are
the shear viscosity and the elastic shear modulus. Those two quantities can be measured in real
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systems and such measurements can provide a good insight into the glass transition phenomena
and its relations with MCT. The complex shear viscosity η∗(φ, T , ω) can be calculated in terms
of the normalized time correlation function of the density fluctuations φk(t) [25, 26]

η∗(φ, T , ω) = kBT

60 π2

∫ ∞

0
dt eiωt

∫ ∞

0
dk k4

[
d ln Sk

dk
φk(t)

]2

(20)

and is related to the complex shear modulus G∗(φ, T , ω) by

G∗(φ, T , ω) = iωη∗(φ, T , ω). (21)

It is possible to take the ω → 0 limit in equation (20)

η∗(φ, T , ω = 0) = kBT

60 π2

∫ ∞

0
dk k4

[
d ln Sk

dk
fk

]2

(22)

and this gives the static shear viscosity. We note that this formula, in that it depends on
the square of the correlation function, is different in structure from that used by Weitz and
co-workers, where the stress–relaxation function is linearly related to the density correlation
function [27]. This difference would lead, in principle, to substantially different predictions for
the loss modulus, and in particular around its minimum. It seems likely that the idea the stress
modulus is linear in the correlation function is more suited to viscoelastic properties dominated
by large domains, and their changing surface area under shear [28], whilst the dependence on
the square of the correlation function is more suited to dense fluids where the properties are
dominated by loss of mobility due to caging effects. All the quantities in equations (20)–
(22) can be evaluated for the present system, and therefore it is possible to use the numerical
solution of equation (12) in order to solve them. This has been accomplished performing the
integrals with standard numerical integration over 2000 q-vector varying between 0 and 500.
In figure 6 the static shear modulus has been represented for three different packing fractions
(φ = 0.539 672, φ = 0.544 052 and φ = 0.580 000) as a function of the temperature. These
three cases correspond to crossing the glass–glass line, crossing the A3 point and a density
where the repulsive and attractive glasses have become indistinguishable.

0.5 1.0 1.5 2.0 2.5 3.0

T
10

2

10
3

10
4

η(
ω

=0
)

φ=0.539672
φ=0.544052 (end-point)
φ=0.580000

Figure 6. The static shear moduli on crossing the glass–glass transition line for ε = 0.03 and close
to the A3 bifurcation point.

In the first case it is clearly possible to distinguish between the two glasses. For low
temperatures there is strong dependence of the elastic viscosity on the temperature, in particular
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the system becomes more and more rigid on decreasing the temperature. When the system
crosses the glass–glass transition there is a discontinuity in the elastic response which clearly
indicates that the structure is changed. Increasing further the temperature the elastic behaviour
does not change so much anymore and for high temperature the system behaves like a hard
spheres suspension. In this case the glass is originated by the cage effect and consequently
the particles are forced to move inside a fixed volume that does not change with temperature.
It is then evident how the differences between the two glasses are manifested by mechanical
properties.
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Figure 7. Relaxation of the shear viscosity on crossing the attractive transition line for ε = 0.03
and φ = 0.504 449.

We have noted that the difference in the shear modulus as the A3 point is approached is
described a by a power law, and it is also possible to show that in this regime the differences in
mechanical properties of the two systems are due to the different shape of the non-ergodicity
parameter fq , and hence the long time residual motions in the gel, and not to the contribution of
the equilibrium structure factor [29]. We have also performed this calculation for the dynamical
quantities defined by (20) and (21). It is evident that, if the system is in the glassy phase we have
for the long time behaviour of the density correlators φq(t → ∞) = fq �= 0, and consequently
the integral in (20) is unbounded. Thus the solution has a zero frequency pole. In order to
obtain convergent solutions for a glass we have replaced φq(t) with φ̂q(t) = φq(t)− fq which
decays to zero at infinite time. In figures 7(a) and (b) the real and the imaginary part of the
complex viscosity, η′(ω) and η′′(ω), are presented for a fixed volume fraction, φ = 0.504 449,
for different temperatures, approaching and crossing the glass transition. In figures 8(a) and (b)
G′(ω) and G′′(ω) are shown for the same points as figure 7. Since figures 7 and 8 contain
the same information we discuss only figure 8. G′(ω) represents the elastic response of the
material: the higher its value the stiffer the material at that frequency scale. The imaginary
part of the shear modulus describes the viscous behaviour of the system and so the dissipation.
Both quantities can be easily measured experimentally, for example as the response of a
sample to small oscillatory shears which weakly perturb the system [27]. Approaching the
glass transition we note that the G′(ω) begins to develop a shoulder at low frequency. This
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Figure 8. Relaxation of the shear modulus on crossing the attractive transition line for ε = 0.03
and φ = 0.504 449.

effect is due to the slowing down of the dynamics of the system, in other words the formation
of the plateau in the φq(t) is responsible for the formation of a region where G′(ω) varies only
slightly with frequency. The range of such a region tends to increase approaching Tg . Indeed a
similar behaviour has been observed experimentally in measurements of linear viscoelasticity
in a colloidal suspension with hard sphere interaction [27]. If the system is in a glassy state
the value of the real part of the static shear modulus G′(ω = 0) is finite, indicating that
the system is solid and consequently it presents an elastic behaviour. In the liquid phase,
however, the system does not show any elastic behaviour so the G′(ω = 0) tends to zero. It
is then clear that at the glass transition the system abruptly changes its behaviour, presenting
a singularity in the static shear modulus. In figure 8(b) the behaviour of the imaginary part
of the shear modulus is represented. At high frequency the curves for different temperature
are the same, showing the microscopic dynamics which is the same for all the temperatures.
Approaching the glass transition a second maximum starts to emerge. Such a maximum
represents the α-relaxation and it moves toward low frequency on decreasing the distance to
the glass transition temperature Tg . The minimum of G′′(ω) corresponds to the plateau region
in time, and the power law behaviour in frequency on both sides has been already observed in
hard spheres systems [27].

7. Conclusions

In this paper we have outlined some of the experimental observations that have been made of
particle gels in colloidal systems where we know there to be a strong short-ranged potential. We
have shown that all of these features may be interpreted within the paradigm that such particle
gels represent a new type of attractive glass. However, having made this correspondence,
we then find a number of predictions of new phenomena that have yet to be confirmed
experimentally, or are just being so. These include the re-entrant behaviour for the phase
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diagram, the logarithmic dynamic behaviour near this re-entrant regime, and in the general the
characteristic alpha relaxational behaviour near gelation. We have calculated the mechanical
manifestations of these phenomena also. Thus we have shown how the glass–glass transition
may be studied using the shear modulus, and that the particle gel must be expected to be much
stiffer than the colloidal glass, but that the differences between them vanishes near the A3

point. We have also studied, to our knowledge for the first time, the frequency dependent
modulus and loss modulus for these systems, using the paradigm that the system is undergoing
a glass transition. MCT type treatments seem to be suited to study colloidal systems of this
type because, at least for the repulsive system, the glass transition seems to lack some of the
fluctuations of molecular liquids. We also can calculate phase diagrams, and mechanical and
scattering properties from a single theory. We expect that, in future, dense particle gels will
be better fitted to the theory present here, than previous phenomenological treatments.

There remains much to be done in many directions. It now begins to seems likely that
the glass paradigm is suitable for the interpretation of particle gelation. However we must
await further detailed experimental work to see just how extensive the agreement with MCT
type treatments will be. We may also speculate that this type of idea will have much broader
significance than particle gels. There is every reason to hope that polymer gelation and protein
gelation may also find a description in similar terms. Certainly this is a rich area for future
exploration.
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[26] Sjögren L 1991 J. Phys.: Condens. Matter 3 5023
[27] Weitz D A 1995 Phys. Rev. Lett. 75 2770
[28] Onuki A 1987 Phys. Rev. A 35 5149
[29] Zaccarelli E, Foffi G, Dawson K A, Sciortino F and Tartaglia P 2001 Phys. Rev. E 63 31 501


